

2 weekly

Exercises Number of positions

MATH-202(c) Analysis III

Licht Martin Werner

Cursus	Sem.	Туре	Language of teaching Credits Session Semester Exam Workload Weeks	English 5 Winter Fall Written 150h 14
Electrical and Electronical Engineering	BA3	Obl.		
HES - EL	Н	Obl.		
IES - GM	Н	Obl.		
Materials Science and Engineering	BA3	Obl.		
Mechanical engineering	BA3	Obl.		
			Hours	5 weekly
			Lecture	3 weekly

Summary

The course studies the fundamental concepts of vector analysis and Fourier-Laplace analysis with a view to their use in solving multidisciplinary problems in scientific engineering.

Content

Vector analysis

The gradient, rotational, divergence and Laplacian operators. Curvilinear integrals and surface integrals. Vector and potential fields. Green's, divergence and Stokes' theorems.

Fourier analysis and Laplace transforms

Fourier series. Identity of Parceval. Fourier transforms. Identity of Plancherel. Laplace transforms. Applications to ordinary differential equations. Applications to partial differential equations.

Learning Prerequisites

Required courses Analyse I, Analyse II, Algèbre linéaire. Analysis I, Analysis II, Linear algebra.

Assessment methods

Exam written

Resources

Virtual desktop infrastructure (VDI) Yes

Moodle Link

• https://go.epfl.ch/MATH-202_c