

2 weekly 2 weekly

Lecture

Exercises Number of positions

MATH-207(c) Analysis IV

Licht Martin Werner

Cursus	Sem.	Туре	Language of	English
Electrical and Electronical Engineering	BA4	Obl.	teaching Credits Session Semester Exam Workload Weeks	English
HES - EL	Е	Obl.		4 Summer Spring Written 120h 14
HES - GM	Е	Obl.		
Materials Science and Engineering	BA4	Obl.		
Mechanical engineering	BA4	Obl.		
			Hours	4 weekly

Summary

This course is an introduction to the theory of complex analysis, Fourier series and Fourier transforms (including for tempered distributions), the Laplace transform, and their uses to solve ordinary and partial differential equations.

Content

Complex analysis

- Definitions and examples of complex functions.
- Holomorphic functions.
- Cauchy-Riemann equations.
- Complex integrals and Cauchy formulas.
- Series of Laurent.
- Residue theorem.

Laplace's analysis

- Laplace transforms.
- Applications to ordinary differential equations.
- Applications to partial differential equations.

Learning Prerequisites

Required courses Linear Algebra, Analysis I, Analysis II, Analysis III

Important concepts to start the course

Important concepts to master

- Usual derivatives and derivation rules
- Common primitives and integration techniques (IPP, substitution)
- Taylor series and analytic functions
- · Complex numbers (definitions, Euler's identity, complex exponential)
- Fourier series and transforms
- Linear differential equations

Assessment methods

Resources Bibliography Bibliographie B. Dacorogna et C. Tanteri, Analyse avancée pour ingénieurs, PPUR 2018.

Ressources en bibliothèque

Analyse avancée pour ingénieurs / Dacorogna

Moodle Link

• https://go.epfl.ch/MATH-207_c