Image processing II

Liebling Michael, Sage Daniel, Unser Michaël, Van De Ville Dimitri

<table>
<thead>
<tr>
<th>Cursus</th>
<th>Sem.</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computational science and Engineering</td>
<td>MA2, MA4</td>
<td>Opt.</td>
</tr>
<tr>
<td>Computational science and engineering minor</td>
<td>E</td>
<td>Opt.</td>
</tr>
<tr>
<td>Computer science</td>
<td>MA2, MA4</td>
<td>Opt.</td>
</tr>
<tr>
<td>Cybersecurity</td>
<td>MA2, MA4</td>
<td>Opt.</td>
</tr>
<tr>
<td>Digital Humanities</td>
<td>MA2, MA4</td>
<td>Opt.</td>
</tr>
<tr>
<td>Environmental Sciences and Engineering</td>
<td>MA2, MA4</td>
<td>Opt.</td>
</tr>
<tr>
<td>Life Sciences Engineering</td>
<td>MA2, MA4</td>
<td>Opt.</td>
</tr>
<tr>
<td>Microtechnics</td>
<td>MA2, MA4</td>
<td>Opt.</td>
</tr>
<tr>
<td>Minor in Imaging</td>
<td>E</td>
<td>Opt.</td>
</tr>
<tr>
<td>Neuro-X</td>
<td>MA2, MA4</td>
<td>Opt.</td>
</tr>
<tr>
<td>Photonics minor</td>
<td>E</td>
<td>Opt.</td>
</tr>
<tr>
<td>Robotics, Control and Intelligent Systems</td>
<td></td>
<td>Opt.</td>
</tr>
<tr>
<td>Robotics</td>
<td>MA2, MA4</td>
<td>Opt.</td>
</tr>
<tr>
<td>SC master EPFL</td>
<td>MA2, MA4</td>
<td>Opt.</td>
</tr>
</tbody>
</table>

Language of teaching
- English

Credits
- 3

Session
- Summer
- Spring

Exam
- Written

Workload
- 90h

Weeks
- 14

Hours
- 3 weekly

Lectures
- 3 weekly

Summary

Study of advanced image processing; mathematical imaging. Development of image-processing software and prototyping in Jupyter Notebooks; application to real-world examples in industrial vision and biomedical imaging.

Content

- **Directional image analysis.** Mathematical foundations. Structure tensor. Steerable filters.
- **Computational imaging.** Imaging as an inverse problem. Iterative reconstruction methods. Elements of convex analysis. Regularization & sparsity constraints.

Learning Prerequisites

Required courses
- Image Processing I

Recommended courses
- Signals and Systems I & II, linear algebra, analysis

Important concepts to start the course
- Basic image processing and related analytical tools (Fourier transform, z-transform, etc.)

Recommended courses
- Signals and Systems I & II, linear algebra, analysis

Important concepts to start the course
Basic image processing and related analytical tools (Fourier transform, z-transform, etc.)

Learning Outcomes

• Construct interpolation models and continuous-discrete representations
• Analyze image transforms
• Design image-reconstruction algorithms
• Formalize multiresolution representations using wavelets
• Design deconvolution algorithms
• Perform image analysis and feature extraction
• Design image-processing software (plugins)
• Synthesize steerable filters
• Construct interpolation models and continuous-discrete representations
• Analyze image transforms
• Design image-reconstruction algorithms
• Formalize multiresolution representations using wavelets
• Perform image analysis and feature extraction
• Design image-processing software
• Design image reconstruction algorithms

Transversal skills

• Plan and carry out activities in a way which makes optimal use of available time and other resources.
• Manage priorities.
• Access and evaluate appropriate sources of information.
• Use both general and domain specific IT resources and tools

Assessment methods

The objectives of the course will be assessed as follows:

• 70% final exam
• 30% IP labs

Resources

Moodle Link

• https://go.epfl.ch/MICRO-512