

EE-557 Semiconductor devices I

Matioli Elison		
Cursus	Sem.	Type
Electrical and Electronical Engineering	MA1, MA3	Obl.
Electrical and electronic engineering minor	Н	Opt.
Energy Science and Technology	MA1, MA3	Opt.
MNIS	MA3	Opt.
Minor in Quantum Science and Engineering	Н	Opt.
Quantum Science and Engineering	MA1, MA3	Opt.

Language of teaching	English
Credits	4
Session	Winter
Semester	Fall
Exam	During the semester
Workload	120h
Weeks	14
Hours	4 weekly
Courses	3 weekly
Exercises	1 weekly
Number of positions	

Content

- 1. Introduction to Semiconductor Physics
- 2. Carrier Generation and Recombination
 - link to LEDs and Solar cells
- 3. Charge Transport
 - Hall measurements
- 4. Non-uniformly doped semiconductors
 - · Schokley equations.
- 5. p-n junctions
- 6. Metal semiconductor junctions
 - Schottky and Ohmic junctions
- 7. Metal Oxide Semiconductor MOSFETs
- 8. Semiconductor junctions (Compound semiconductors)
 - Band structure simulations
- 9. Semiconductor devices of today
 - High electron mobility transistors (HEMTs)
 - Power transistors

Resources

Moodle Link

• https://go.epfl.ch/EE-557

Semiconductor devices I Page 1 / 1