Computing is nowadays distributed over several machines, in a local IP-like network, a cloud or a P2P network. Failures are common and computations need to proceed despite partial failures of machines or communication links. This course will study the foundations of reliable distributed computing.

Content
- Reliable broadcast
- Causal Broadcast
- Total Order Broadcast
- Consensus
- Non-Blocking Atomic Commit
- Group Membership, View Synchrony
- Terminating Reliable Broadcast
- Shared Memory in Message Passing Systems
- Byzantine Fault Tolerance
- Self Stabilization
- Population protocols (models of mobile networks)
- Bitcoin, Blockchain
- Distributed Machine Learning
- Gossip

Keywords
Distributed algorithms, checkpointing, replication, consensus, atomic broadcast, distributed transactions, atomic commitment, 2PC, Machine Learning

Learning Prerequisites
- **Required courses**
 Basics of Algorithms, networking and operating systems
- **Recommended courses**
 The lecture is orthogonal to the one on concurrent algorithms: it makes a lot of sense to take them in parallel.

Learning Outcomes
By the end of the course, the student must be able to:
• Choose an appropriate abstraction to model a distributed computing problem
• Specify the abstraction
• Present and implement it
• Analyze its complexity
• Prove a distributed algorithm
• Implement a distributed system

Teaching methods
Ex cathedera
Lectures, exercises and practical work

Assessment methods
Final exam (theory)
Project (practice)

Resources
Ressources en bibliothèque
• Introduction to reliable and secure distributed programming / Cachin

Notes/Handbook
Reliable and Secure Distributed Programming
Springer Verlag
C. Cachin, R. Guerraoui, L. Rodrigues

Moodle Link
• https://go.epfl.ch/CS-451