Summary
The course will deliver basic knowledge on the principles of food fermentation and enzyme technology. The course will also present benefits that food biotechnology can bring in terms of Nutrition & Health and Sustainability.

Content
• History of fermentation
• Different types of food fermentation
• Enzyme technology (Protease, Lipases, Carbohydrases)
• Practical examples and benefits generated
• Probiotics, Prebiotics and Postbiotics
• Sustainable Protein Production (Meat and Fish replacers)
• Genetically Modified Food: A curse or a blessing?

Keywords
Biotechnology, fermentation, food, enzyme, probiotics, GM Food

Learning Prerequisites
Required courses
Basic chemistry and biochemistry

Recommended courses
It is recommended to also follow "Chemistry of food processes" by Imre Blank. Both courses will be given in the spring semester on a 4h weekly basis.

Important concepts to start the course
Combine knowledge related to chemistry, biology and food technology. Interest to learn how basic fermentation, enzyme technology and biochemistry is applied in food manufacturing to produce safe products with added benefits.

Learning Outcomes
By the end of the course, the student must be able to:
• Describe basic principles of fermentation
• Describe selected fermentation systems
• Understand enzyme action and main classes of enzymes
• Understand factors related to probiotic technology
• Describe selected industrial food biotechnology processes
• Describe selected classical fermentation processes
• Describe how fermentation can deliver nutrition
• Describe basic safety aspects of fermentation
• Have a critical thought on the role of food biotechnology in today’s world
• Understand sustainable protein sources and technologies

Transversal skills
• Manage priorities.
• Communicate effectively, being understood, including across different languages and cultures.
• Demonstrate the capacity for critical thinking

Teaching methods
Lecture, short exercises, group or individual presentation on specific topic (the presentation will be individually if there are few students, or in group if there are more than 20 students). The presentation will count 20% of the final note.

Expected student activities
Attend lectures. Each student will give a 15 minutes presentation during the semester. This presentation will be given alone or as a team, depending on the number of students. A potential visit to a Nestlé research facility will be decided during the semester.

Assessment methods
The presentation will count 20% of the final note. The written exam will count 80% of the final note.

Supervision
Office hours No
Assistants No
Forum No
Others Q&A during the lectures. Short exercises during the lectures.

Resources
Bibliography
Optional: Biotechnology: an Illustrated Primer
Rolf D. Schmid (author), Claudia Schmidt-Dannert (author), Ruth Hammelehle (illustrator), Paperback (20 Apr 2016)
link is also here: https://slsp-epfl.primo.exlibrisgroup.com/discovery/fulldisplay?docid=alma990106355660205516&context=L&vid=41SLSP_EPF:prod..._CI&adaptor=Local%20Search%20Engine&tab=41SLSP_EPF_MyInst_and_CI&query=any,contains,Schmid%20rolf%20biotechnology&offset=0

Biotechnology: an Illustrated Primer (link is also here: https://slsp-epfl.primo.exlibrisgroup.com/discovery/fulldisplay?docid=alma990106355660205516&context=L&vid=41SLSP_EPF:prod..._CI&adaptor=Local%20Search%20Engine&tab=41SLSP_EPF_MyInst_and_CI&query=any,contains,Schmid%20rolf%20biotechnology&offset=0)

Ressources en bibliothèque
• Biotechnology : an illustrated primer / Schmid
Notes/Handbook
Electronic PDF Files about Food Biotechnology topics, including slides, scientific articles, flyers and posters from food biotech companies.

Moodle Link
• https://go.epfl.ch/ENG-436