ChE-604 Colloidal synthesis of nanoparticles and their energy applications

Buonsanti Raffaella, Loiudice Anna

Cursus	Sem.	Туре	l anguage of	English
Chemistry and Chemical Engineering		Obl.	teaching	English
			Credits	2
			Session	
			Exam	Oral
			Workload	60h
			Hours	28
			Courses	24
			Project	4
			Number of positions	20

Frequency

Every 2 years

Remark

Next time: December 2019

Summary

This course aims at giving an overview on the synthesis of nanoparticles, with more focus on colloidal chemistry, and their implementation into devices for energy applications (batteries, solar cells, artificial photosynthesis, light emitting diodes, electrochromic windows).

Content

General properties of nanoparticles and characterization tools Introduction to different synthetic approaches to nanoparticles Colloidal synthesis Classical Nucleation Theory for homogeneous and heterogeneous nucleation Control on size, shape and composition of nanoparticles General intro to implementation of nanoparticles into devices Application of nanoparticles in photoelectrochemical cells Application of nanoparticles for CO2 reduction (electrochemical and thermochemical) Application of nanoparticles in batteries Application of nanoparticles in electrochromic windows Application of nanoparticles in solar cells Application of nanoparticles in light emitting diode The basic working principles and figure of merit for each energy device will be described.

Keywords

- Colloidal Chemistry
- Nanoparticles
- Energy Devices

Assessment methods

Oral presentation

Resources

Bibliography

Course note and journal papers will be provided during the course.