PHYS-609 Modern photovoltaic technologies

Haug Franz-Josef, Heier Jakob, Romanyuk Yaroslav

Cursus	Sem.	Туре	Language of	English
Advanced Manufacturing		Opt.	teaching	English
Photonics		Opt.	Credits Session	2
			Exam	Oral presentation
			Workload	60h
			Hours	27
			Courses	18
			Exercises	9
			Number of positions	

Frequency

Every year

Remark

Next time: June 13th - 17th 2022

Summary

A link between the fundamental physics, device operation and technological development of various solar cell technologies. Learning about all modern photovoltaic technologies incl. industrially relevant wafer based silicon, thin film chalcogenide, III-V, multijunction, organic and hybrid solar cells.

Content

Day 1

- 1.1 Introduction, solar cell basics and operation, current of solar cell technologies
- 1.2 Si wafer-based solar cells
- 1.3 CIGS & CdTe solar cells

1.4 III-V solar cells

Day 2

- 2.1 Organic semiconductors molecular orbitals and photoinduced processes
- 2.2. Organic and Dye-sensitized solar cells
- 2.3. Perovskite and Hybrid solar cells

Day 3

- 3.1. Absorption of semiconductors with direct and indirect bandgaps
- 3.2. Junction formation and processing of standard crystalline silicon solar cells
- 3.3. Advanced silicon solar cell designs

Keywords

photovoltaics, inorganic semiconductors, organic semiconductors, optics, light management

Learning Prerequisites

Recommended courses

Basic physics, basic chemistry, introduction to quantum mechanics

Teaching methods

Three days teaching (ex-cathedra with short questions)

Expected student activities

Assessment methods

Presentaion of the assignment on the last day