

Theory and Methods for Reinforcement Learning

Cevher Volkan

Cursus	Sem.	Type
Electrical Engineering		Opt.

Language of teaching	English
Credits	3
Session	
Exam	Project report
Workload	90h
Hours	42
Courses	28
TP	14
Number of positions	30

Frequency

Every 2 years

Remark

Next time: Spring 2022

Summary

This course describes theory and methods for decision making under uncertainty under partial feedback.

Content

- 1. Introduction to the reinforcement learning (RL) paradigm
- 2. Overview of classical developments I: Markov Decision Process (MDP, POMDP), and Dynamic Programming (Value Iteration, Policy Iteration)
- 3. Overview of classical developments II: Monte-Carlo methods, TD-Learning, Q-Learning, SARSA (Model-based RL, and Model-free RL)
- 4. Stochastic Bandits and Thompson (posterior) Sampling
- 5. Bandit based RL algorithms (UCRL, UCAgg, UCCRL, REGAL) Exploration and Exploitation
- 6. Policy Search (Policy gradient algorithms, variance reduction, TRPO algorithm)
- 7. Imitation Learning (Inverse Reinforcement Learning, Apprenticeship Learning)

Keywords

Reinforcement learning, policy search.

Learning Prerequisites

Required courses

Optimization, probability theory, mathematics of data.

Assessment methods

Project report.