

PHYS-741 Gauge Theories and the Standard Model

Riembau Saperas Marc, Wulzer Andrea

Туре	Language of	English
Opt.	teaching	Linglish
	Credits	4
	Session	
	Exam	Multiple
	Workload	120h
	Hours	56
	Courses	28
	Exercises	28
	Number of positions	
	Opt.	Credits Session Exam Workload Hours Courses Exercises

Frequency

Every year

Remark

Next time: Fall

Summary

The goal of this course is to explain the conceptual and mathematical bases of the Standard Model of fundamental interactions and to illustrate in detail its phenomenological consequences.

Content

This course will be based on the recorded lectures Andrea gave last year. The students will be instructed to watch the online video of the lectures as the weeks proceed. Andrea will be available to answer student's questions in person on Wednesday at 9:15 (office BSP 713.2), or to answer by email (andrea.wulzer@cern.ch). The exercise sessions will be in person, 10.15-12.00 on Wednesday at BSP 727 and lead by Marc Riembau.

- Non-abelian gauge theories
- Higgs mechanism and massive gauge theories
- Quarks and Leptons
- Basic electroweak phenomenology
- The flavour structure: quark masses and mixing
- Strong interactions
- Basic flavour phenomenology
- The Standard Model as an Effective Field Theory

Keywords

fundamental interactions, particle phenomenology gauge theories, Higgs mechanism,

Learning Prerequisites

Required courses

Relativistic Quantum Fields I et II, Advanced Quantum Mechanics, Advanced Quantum Field Theory,

Recommended courses

General Relativity, Cosmology

Expected student activities

Appreciate the conceptual foundations of the Standard Model as a theory of fundamental interactions and quantitavely understand its phenomenological success. Be able to concretely apply the Standard Model theory to the prediction of physical processes.

Resources

Bibliography M. Peskin and Daniel Schroeder, An Introduction to Quantum Field Theory L.B. Okun, Leptons and Quarks T-P. Cheng and L-F. Li, Gauge Theory of Elementary Particle Physics

Références suggérées par la bibliothèque

• An introduction to Quantum Field Theory / Peskin, Schroeder