

PHYS-645 Physics of random and disordered systems

Müller Markus

Cursus	Sem.	Type
Physics		Obl.

Language of teaching	English
Credits	3
Session	
Exam	Oral
Workload	90h
Hours	42
Courses	28
Exercises	14
Number of positions	

Frequency

Every year

Remark

Next time: Fall 2022

Summary

Introduction to the physics of random processes and disordered systems, providing an overview over phenomena, concepts and theoretical approaches Topics include: Random walks; Roughening/pinning; Localization; Random matrix theory; Spin glasses; Disorder and critical phenomena

Content

This course provides an overview of salient phenomena, concepts and theoretical approaches to a wide variety of random processes and disordered systems, with an emphasis on intuition and physical insight.

- 1) Random processes:
 - Random walks, diffusion
 - Directed polymers in random media,
 - Roughening and pinning of interfaces
- 2) Localization of particles and waves:
 - Weak and strong (Anderson) localization
 - Many-body localization: concepts, ideas, phenomenology
 - Strong randomness approach
- 3) Random matrix theory:
 - · Classification of random matrix models, matrix ensembles.
 - Distribution of eigenvalues, semicircle law, resolvent method.
 - Level spacing statistics: Wignerâ##s surmise, Poisson vs Wigner-Dyson,
 - (Coulomb gas method)
- 4) Spin glasses:
 - Concepts, phenomenology, order parameters; random energy model, trap model
 - Theory: droplets, replicas
 - · Mean field theory:

replica symmetry and its breaking; cavity approach / message passing 5) (depending on time) The role of disorder in critical phenomena:

- Imry-Ma argument
- Harris criterion

Keywords

disordered systems, random processes, random matrix theory, localization, spin glasses

Learning Prerequisites

Required courses
Statistical physics I and II

Recommended courses

Quantum mechanics

Learning Outcomes

By the end of the course, the student must be able to:

- Have an overview over and physical understanding of the phenomena in disordered systems
- Know and explain the concepts, basic techniques and approaches to the main topics

Resources

Bibliography

There will be a Moodle link for this course