|--|

MATH-679 Group schemes

Carvajai Rojas	s Javier Alonso, Patakfal	vi Zsolt		
Cursus	Sem.	Туре	Language of	English
Mathematics		Opt.	teaching	Linglish
			Credits	3
			Session	
			Exam	Term paper
			Workload	90h
			Hours	42
			Courses	28
			Project	14
			Number of	
			positions	

Frequency

Every year

Remark

This is a course on group schemes with an emphasis on structural theorems for algebraic groups and with a stress on the modern presentation using scheme theory and modern algebrai

Summary

This is a course about group schemes, with an emphasis on structural theorems for algebraic groups (e.g. Barsotti--Chevalley's theorem). All the basics will be covered towards the proof of such theorem, with an estress on the modern presentation using scheme theory and modern algebraic geometry.

Content

The following seven contents constitute the core material for the course. It is designed towards the proof of the Barsotti--Chevalley's theorem.

- 1. Definition and basic properties of group schemes and algebraic groups.
- 2. Examples and basic constructions (e.g. neutral component and étale group of connected components).
- 3. Affine algebraic groups and Hopf algebras.
- 4. The (group-theoretic) isomorphism theorems and the category of commutative algebraic groups.
- 5. Solvable and nilpotent algebraic groups (subnormal series).
- 6. Actions of algebraic groups and torsors.
- 7. The structure theorems of algebraic groups: Rosenlincht's decomposition theorem and Barsotti--Chevalley's theorem.

Time permitting and depending on the attendants interests, we may cover the following more specialized and advanced contents.

- 8. Finite group schemes.
- 9. The structure of solvable algebraic groups (linearly reductive groups, unipotent groups, and tori).
- 10. Picard schemes.
- 11. Hochschild cohomology.

Keywords

Group schemes, algebraic groups, Barsotti--Chevalley's theorem, torsors, Picard schemes.

Learning Prerequisites

Required courses MATH 510 Modern Algebraic Geometry

Learning Outcomes

By the end of the course, the student must be able to:

• structure of general algebraic groups

Resources

Bibliography

- 1. Algebraic groups by J. S. Milne.
- 2. Some structure theorems for algebraic groups by M. Brion.
- 3. Lectures on the structure of algebraic groups and geometric applications by M. Brion, P. Samueal, and V. Uma.

Ressources en bibliothèque

- Some structure theorems for algebraic groups / Brion
- Algebraic groups / Milne
- Lectures on the structure of algebraic groups and geometric applications / Brion, Samueal & Ulma