Additive Manufacturing of Metals and Alloys

Leinenbach Christian, Logé Roland

Cursus
Advanced Manufacturing
Materials Science and Engineering

Sem.
Type
Obl.
Opt.

Language
English

Credits
2

Session
Exam
Oral presentation

Workload
60h

Hours
28

Lecture
28

Number of positions

Frequency
Every 2 years

Remark
Next time Spring 2023

Summary
This course is designed to cover a number of materials science aspects related to the field of additive manufacturing of metals and alloys, and to provide an in-depth review of corresponding fundamentals.

Content
1. Introduction to Additive Manufacturing (AM) of metals and AM methods (LPBF, EBM, DED, other methods such as binder jetting)
2. Powder fabrication and characterization
3. Interaction between beam (laser, e-beam) and material, heat formation and heat flow in the material
4. Fundamentals of rapid solidification of metals and alloys
5. Microstructure formation and control during AM
6. Residual stresses and warpage, defects (porosity, cracks) in AM parts
7. Post-treatments and associated microstructure evolutions
8. Mechanical properties of AM parts (static, cyclic), mechanical anisotropy
9. Material specific considerations: AM of steels, Ni alloys, Ti alloys, Al alloys; AM of precious metals and Cu alloys; AM of special materials (MMCs, gradient materials/multimaterials); Development/optimization of alloys

Keywords
metals and alloys, laser processing, electron beam melting, solidification, microstructure, post-treatment, mechanical properties, residual stresses

Learning Prerequisites
Required courses
Participants should be educated in materials science and engineering, physics, mechanical engineering or physical chemistry to benefit the most from this course.
Assessment methods
Oral presentation

Resources
Moodle Link
• https://go.epfl.ch/MSE-666