MATH-602	Inference on graphs			
Abbé Emmanuel, Berthier Raphaël Jean				
Cursus	Sem.	Туре	Language of	English
Mathematics		Opt.	teaching	Ligion
			Credits	3
			Session	
			Exam	Oral
			Workload	90h
			Hours	60
			Courses	20
			TP	40

. .

Frequency

Every year

Remark

Fall semester

Summary

The class covers topics related to statistical inference and algorithms on graphs: basic random graphs concepts, thresholds, subgraph containment (planted clique), connectivity, broadcasting on trees, stochastic block models and perceptron models. Requirement: basics of probability and statistics.

Content

The class covers topics related to statistical inference and algorithms on graphs: basic random graphs concepts, thresholds, subgraph containment (planted clique), connectivity, broadcasting on trees, stochastic block models and perceptron models. Requirement: basics of probability and statistics.

The class will have lectures and projects consisting of papers presentations, potential problem extensions and reports.

Keywords

Inference on graphs, learning on graphs, random graphs, community detection, clustering, perceptron, neural networks, spectral graph theory.

Learning Prerequisites

Required courses

A basic class on probability and statistics

Learning Outcomes

• Understand the material of the class and related papers.

Resources

Bibliography

Notes on "Random graphs" and monograph on "Community detection and stochastic block models" by E. Abbe. List of papers.

Number of positions

Community detection and stochastic block models / Abbé

Moodle Link

• https://go.epfl.ch/MATH-602