Cursus

<table>
<thead>
<tr>
<th>Cursus</th>
<th>Sem.</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Civil & Environmental Engineering</td>
<td>Obl.</td>
<td></td>
</tr>
</tbody>
</table>

Contact
- Language: English
- Credits: 4
- Exam: Project report
- Workload: 120h
- Hours: 56
 - Lecture: 18
 - Practical work: 38
- Number of positions: 40

Frequency
Every year

Remark
Next time: Fall 2023

Summary
The students will acquire a solid knowledge on the processes necessary to design, write and use scientific software. Software design techniques will be used to program a multi-usage particles code, aiming at providing the link between algorithmic/complexity, optimization and program designs.

Content
- Object Oriented Paradigm
- C/C++ and Python programming (class, operator, template, design patterns, STL)
- Programming techniques, code factorization
- Pointers, memory management, data structures
- Linear system solving (Eigen library)
- C++/Python coupling (pybind)
- Post-treatment: Paraview, numpy/scipy, matplotlib

Classical problems: series calculations, solar system and many-body calculation, sparse linear algebra.

Keywords
- programming, scientific, code design, algorithm, optimization, analysis

Learning Prerequisites

Required courses
- Basis in programming languages (C/Fortran)
- Basic Linux knowledge is required

Important concepts to start the course
A Linux laptop is required for this class

Expected student activities
Exam: 4 evaluated homeworks
Resources

Moodle Link

• https://go.epfl.ch/MATH-611