# MATH-611 Scientific programming for Engineers

| Anciaux Guillaume                 |      |      |                                        |           |
|-----------------------------------|------|------|----------------------------------------|-----------|
| Cursus                            | Sem. | Туре | Language of                            | English   |
| Civil & Environmental Engineering |      | Obl. | teaching<br>Credits<br>Session<br>Exam | Linglion  |
| Electrical Engineering            |      | Opt. |                                        | 4         |
| Mechanics                         |      | Opt. |                                        | Project r |
|                                   |      |      | Workload                               | 120h      |
|                                   |      |      | Hours                                  | 56        |

#### Frequency

Every year

#### Remark

Next time: Fall 2023

#### Summary

The students will acquire a solid knowledge on the processes necessary to design, write and use scientific software. Software design techniques will be used to program a multi-usage particles code, aiming at providing the link between algorithmic/complexity, optimization and program designs.

#### Content

Object Oriented Paradigm C/C++ and Python programming (class, operator, template, design patterns, STL) Programming techniques, code factorization Pointers, memory management, data structures Linear system solving (Eigen library) C++/Python coupling (pybind) Post-treatment: Paraview, numpy/scipy, matplotlib

Classical problems: series calculations, solar system and many-body calculation, sparse linear algebra.

## **Keywords** programming, scientific, code design, algorithm, optimization, analysis

### Learning Prerequisites

Required courses Basis in programming languages (C/Fortran) Basic Linux knowledge is required

Important concepts to start the course A Linux laptop is required for this class

#### **Expected student activities**

Exam: 4 evaluated homeworks



report

18

38

40

Lecture

Practical

work Number of

positions

Resources

Moodle Link

• https://go.epfl.ch/MATH-611