

MICRO-632 Advanced micro-/nano- manufacturing

Various lecturers

Cursus	Sem.	Туре
Advanced Manufacturing		Opt.
Electrical Engineering		Opt.
Microsystems and Microelectronics		Opt.

Language of teaching	English
Credits	2
Session	
Exam	Written
Workload	60h
Hours	30
Lecture	20
Exercises	10
Number of	30
positions	

Frequency

Every year

Summary

This course contains lectures covering the latest research and development done in the field of micro-/nano-manufacturing methods and processes. It consists on an intensive 5 days training and is done in the framework of a collaboration between FEMTO-ST in France and EPFL.

Content

Each topic is covered in tandem by a professor from EPFL and FEMTO-ST.

The course location is in EPFL antenna in Neuchâtel.

The topics covered are:

- Laser micro/nano-manufacturing (François Courvoisier/Yves Bellouard)
- Micromachining Sensor & Actuators (Ausrine Bartasyte/Herb Shea)
- Micro/Nano-assembly (Salman Sakar/Cédric Clévy)
- Manufacturing of nano-optics (Olivier Martin/Yasin Ekinci from PSI)
- 3D Printing for materials and meta materials (Christophe Moser/Muamar Kadic)

Each lecture lasts 2x45min and is given by a specialist of the field.

Two networking events are planned, at the beginning and end of the week, respectively.

Examination is given in the form of short QCM after lecture day.

Note

The next course will take place from 17th to 21st June 2024.

Keywords

Micromanufacturing, 3D printing, laser manufacturing, micro-assembly, sensors and actuators

Learning Outcomes

By the end of the course, the student must be able to:

- Discuss a comprehensive overview on the latest research work done in the field of micro-/nano- manufacturing
- understand what are the specifics related to making things at the smaller scale.

Assessment methods

Written examination

Resources

Moodle Link

• https://go.epfl.ch/MICRO-632