

MSE-703 Science and technology of UV-induced polymerization

Dalle Vacche Sara, Leterrier Yves, Nouzille Eric Jacques, Sangermano Marco

Cursus	Sem.	Туре	Language of	English
Advanced Manufacturing		Opt.	teaching	Englion
Materials Science and Engineering		Opt.	Credits Session	1
			Exam Workload Hours Lecture Number of positions	Term paper 30h 14 14

Frequency

Every year

Remark

Ne sera pas enseigné durant l'année académique 2023-2024

Summary

The course presents the main classes of photopolymers and key factors which control photopolymerization. It explains how to select the right formulation and optimize processes for a given application. Standard and novel characterization methods, new materials and new applications are also presented.

Content

- 1. Introduction to radiation processing
- 2. Fundamentals of free-radical systems
- 3. Components of photocurable formulations: photoinitiators, monomers, additives
- 4. Analytical methods: state of the art and new developments
- 5. Structure-property relations in UV curable polymers
- 6. Advances in UV-induced polymerization research
- 7. Application to UV inks and coatings, nanostructures and devices

Learning Prerequisites

Recommended courses

Polymer science, organic chemistry

Assessment methods

The course provides 1 ECTS, based on a written report (maximum 10 pages) on a topic relevant to UV polymers. The report should synthesize three technical papers A, B and C from open scientific literature and develop a short case study (for example using equation from paper A and data from paper B to model results from paper C, or designing a process method (formulation, UV intensity, time) using inputs from the 3 papers).

Resources

Notes/Handbook

A copy of the course slides is provided at the start of the course.

Moodle Link

• https://go.epfl.ch/MSE-703