MSE-704
3D Electron Microscopy and FIB-Nanotomography
Cantoni Marco, Navratilova Lucie

Cursus
Materials Science and Engineering
Type: Opt.

<table>
<thead>
<tr>
<th>Contact language</th>
<th>English</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>1</td>
</tr>
<tr>
<td>Session</td>
<td></td>
</tr>
<tr>
<td>Exam</td>
<td>Project report</td>
</tr>
<tr>
<td>Workload</td>
<td>30h</td>
</tr>
<tr>
<td>Hours</td>
<td>14</td>
</tr>
<tr>
<td>Lecture</td>
<td>8</td>
</tr>
<tr>
<td>Exercises</td>
<td>4</td>
</tr>
<tr>
<td>Practical work</td>
<td>2</td>
</tr>
<tr>
<td>Number of positions</td>
<td></td>
</tr>
</tbody>
</table>

Frequency
Every year

Summary
The principles of 3D surface (SEM) reconstruction and its limitations will be explained. 3D volume reconstruction and tomography methods by electron microscopy (SEM/FIB and TEM) will be explained and compared with x-ray tomography.

Content
Physics of the different signals generated by electron beams and focused ion beams.
- Underlying physical principles for the acquisition of data sets for 3D reconstruction: interaction volumes, voxel (3 dimensional “pixel”) size, mechanical stability issues for successful reconstruction.
- Surface reconstruction (SEM), serial (parallel) sectioning (SEM/FIB and TEM), tilt series tomography (TEM)
- Introduction to the use of software packages for 3D surface and volume reconstruction
- Practical session about the 3D surface reconstruction by SEM
- Practical session about 3D volume reconstruction by FIB nano-tomography
- Practical session TEM tomography

Keywords
3D reconstruction, serial sectioning, electron tomography, FIB Nano-tomography, scanning electron microscopy, transmission electron microscopy

Learning Prerequisites
Recommended courses
Background in electron microscopy: electron microscopy lecture 5 sem. Bachelor level or doctoral school SEM&TEM or equivalent

Assessment methods
Project Report

Resources
Moodle Link

- https://go.epfl.ch/MSE-704