PHYS-731 Magnetic confinement

Fasoli Ambrogio, Graves Jonathan, Loizu Joaquim, Merle Antoine, Ricci Paolo

Physics Opt. Credits	age of English
Credits	
	s 4
Sessio	'n
Exam	Oral
Workle	bad 120h
Hours	56
Leo	cture 28
Ex	ercises 28
Numb	
positio	ons

Frequency

Every 2 years

Remark

Next time: Fall 2024

Summary

To provide an overview of the fundamentals of magnetic confinement (MC) of plasmas for fusion. The different MC configurations are presented, with a description of their operating regimes. The basic elements of particle & energy transport, of plasma-wall interaction & of burning plasma are introduced.

Content

The plasma heating techniques are addressed. The course aims at providing both an experimental and a theoretical approach to the subjects.

The course will consist of three parts:

• an overview of the different magnetic confinement configurations (tokamaks, stellarator, RFPs, ...) and of the operating regimes, with an introduction to the plasma-wall interaction and to the burning plasma physics;

• introduction to particle and energy transport in magnetic confinement devices (classical, neoclassical, and turbulent transport);

• basic principles of plasma heating and current drive, including heating due to fusion-generated alpha particles.

Learning Prerequisites

Required courses

The introductory plasma physics courses are a pre-requisite.